Custom Search


Friday 15 December 2000

Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460.

By: Ferreira CG, Span SW, Peters GJ, Kruyt FA, Giaccone G.

Cancer Res 2000 Dec 15;60(24):7133-41

Chemotherapy-induced apoptosis is generally thought to be dependent on a pathway headed by caspase-9. This model is primarily based on studies performed in leukemia cells; however, little is known about caspase cascades in relatively resistant solid tumor cells, including non-small cell lung cancer (NSCLC) cells. Using the NSCLC cell line NCI-H460 (H460), here, we studied the effect of stable expression of various caspase inhibitors on apoptosis induced by the anticancer drugs cisplatin, topotecan, and gemcitabine. Interestingly, overexpression of caspase-9S and X-linked inhibitor of apoptosis (XIAP), both able to inhibit caspase-9 activity, failed to block apoptosis. In contrast, stable expression of caspase-8 inhibitors, such as cytokine response modifier A (CrmA) and dominant-negative caspase-8, almost completely abrogated apoptosis and also enhanced clonogenic survival. Caspase-8 activation in H460 cells was not mediated by death receptors, inasmuch as overexpression of dominant-negative Fas-associated death domain (FADD-DN) did not prevent procaspase-8 cleavage and subsequent apoptosis. However, stable expression of Bcl-2 and Bcl-xL did suppress these apoptotic events, including the release of cytochrome c from mitochondria, which was observed in drug-treated H460 cells. In the NSCLC cell line H460, we, thus, provide evidence for the existence of a novel drug-inducible apoptotic pathway in which activation of caspase-8, and not of caspase-9, forms the apical and mitochondria-dependent step that subsequently activates the downstream caspases.

Use of this site is subject to the following terms of use